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Abstract
We present a new control strategy for a VTOL aerial

robot. A kinematics control law is derived using Astolfi’s
discontinuous control, after introducing a chained form
transformation with one generator and three chains to the
original model. This was motivated by the fact that the
discontinuous kinematic-model without using a chained
form transformation assures only a local stability of the
kinematic based control system, instead of guaranteeing a
global stability of the control system. Finally, a computer
simulation is shown to demonstrate the effectiveness of our
approach.

1 Introduction

Unmanned vehicles are important when it comes to
performing a desired task in a dangerous and/or inacces-
sible environment. Unmanned indoor and outdoor mo-
bile robots have been successfully used for some decades.
More recently, a growing interest in unmanned aerial ve-
hicles (UAVs) has been shown among the research com-
munity. Being able to design a vertical takeoff and land-
ing (VTOL)-UAV, which is highly maneuverable and ex-
tremely stable, is an important contribution to the field of
aerial robotics, because potential applications are tremen-
dous as seen in high buildings and monuments investiga-
tion, rescue missions, film making, etc.

Recently, the study on VTOL type aerial robot attracts
the attention of researchers, in which the robot is called
“Draganflyer,” “Quattrocopter,” “X-4 Flyer,” or “Quadro-
tor” and has four rotors in general [1, 2, 3]. The control
system for this VTOL type aerial robot can be regarded as
an underactuated system [4] that deals with controlling six
generalized coordinates with four inputs, and its control be-
comes complicated, compared to a nonholonomic control
where any four states are controlled out of six generalized
coordinates by using four inputs.

In this paper, we present a new control strategy for a
VTOL aerial robot that is called X4-flyer. A kinematics
control law is derived using Astolfi’s discontinuous con-
trol [5], after introducing a chained form transformation [6]
with one generator and three chains to the original model.
This was motivated by the fact [7] that the discontinuous

kinematic-model without using a chained form transforma-
tion assures only a local stability (or controllability) of the
kinematic based control system, instead of guaranteeing a
global stability of the control system. Finally, a computer
simulation is given to demonstrate the effectiveness of our
approach.

2 A Chained Form Transformation for a
Symmetric Affine System with n State-
Four Inputs

Let the controlled objective be a symmetric affine sys-
tem withn state-four inputs described by

q̇ = g1u1 + g2u2 + g3u3 + g4u4, q ∈ ℜn (1)

Applying the transformations of the state and input such as

z= Φ (q) , v = Ξ (q) u (2)

to the above equation, the objective is to obtain the follow-
ing chained form having one-generator and three chains

ξ̇0 = v1 ζ̇0 = v2 η̇0 = v3 γ̇0 = v4

ζ̇1 = ζ0v1 η̇1 = η0v1 γ̇1 = γ0v1

...
...

...

ζ̇n2 = ζn2−1v1 η̇n3 = ηn3−1v1 γ̇n4 = γn4−1v1

wheren2 + n3 + n4 + 4 = n (n2 ≥ n3 ≥ n4 ≥ 0).
It is known [4] that the reachability distribution of a

chained form system has rankn for all z ∈ ℜn, which
implies that the transformed system is also globally con-
trollable because it is a symmetric affine system.

As a sufficient condition for implementing a chained
form transformation, the input vector fieldsg1 . . . g4 sat-
isfy the following forms:

g1 =
∂

∂q1
+

n∑
i=2

gi
1
∂

∂xi
, g2 =

n∑
i=2

gi
2
∂

∂xi

g3 =

n∑
i=2

gi
3
∂

∂xi
, g4 =

n∑
i=2

gi
4
∂

∂xi
(3)
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Fig. 1: Coordinate definition of X4-flyer

where the vector fieldsg1 . . . g4 are to be smooth, linearly
independent each other.

Define the distributions:

G0 = span{g2,g3,g4}
G1 = span{g2, g3,g4,adg1g2,adg1g3,adg1g4}

...

Gm = span{adi
g1

g2,adi
g1

g3,adi
g1

g4} (0 ≤ i ≤ m) (4)

whereG0 . . .Gm are all involutive andGm has rankn− 1.
In addition, we have to find four functions,h1 . . . h4 to

be not unique, such that

dh1⊥G j 0 ≤ j ≤ m

dLk
g1

h2⊥G j 0 ≤ j ≤ n2 − 1 0≤ k ≤ n2 − 1− j

dLk
g1

h3⊥G j 0 ≤ j ≤ n3 − 1 0≤ k ≤ n3 − 1− j

dLk
g1

h4⊥G j 0 ≤ j ≤ n4 − 1 0≤ k ≤ n4 − 1− j

where the Lie derivative of a scalar functionφ (x) along a
vector fieldf (x) is the following scalar function defined by

L fφ (x) =
∂φ

∂x
f (x) (5)

When all of the above conditions are satisfied,Φ (q) and
Ξ (q) can be reduced to

Φ (q) =
[
h1 Ln2

g1
h2 · · · h2 Ln3

g1
h3 · · · h3 Ln4

g1
h4 · · · h4

]T

Ξ (q) =



1 0 0 0
Ln2+1

g1
h2 Lg2L

n2
g1

h2 Lg3L
n2
g1

h2 Lg4L
n2
g1

h2

Ln3+1
g1

h3 Lg2L
n3
g1

h3 Lg3L
n3
g1

h3 Lg4L
n3
g1

h3

Ln4+1
g1

h4 Lg2L
n4
g1

h4 Lg3L
n4
g1

h4 Lg4L
n4
g1

h4



3 Kinematics of X4-Flyer

Let E = {Ex Ey Ez} denote a right-hand inertial frame
such thatEz denotes the vertical direction downwards into
the earth (see Fig. 1). Let the vectorξ =

[
x y z

]T denote
the position of the center of mass of the airframe in the
frameE relative to a fixed originO ∈ E. Let c be a (right-
hand) body fixed frame for the airframe. When defining the
rotational anglesη =

[
φ θ ψ

]T aroundX-, Y-, andZ-axis
in the framec, the orientation of the rigid body is given by
a rotationR : c → E, whereR ∈ ℜ3×3 is an orthogonal
rotation matrix.

Using such a rotational matrix and exchanging ˙x and ż
in the kinematic model of X4-flyer [7], gives the following
model:



ż
ẏ
ẋ
φ̇
θ̇
ψ̇


=



cosφ cosθ 0 0 0
cosφ sinθ sinψ − sinφ cosψ 0 0 0
cosφ sinθ cosψ + sinφ sinψ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1




żb

φ̇
θ̇
ψ̇


(6)

where żb denotes theZ-directional translational velocity.
When definingq = [z y xφ θ ψ]T andu = [żb φ̇ θ̇ ψ̇]T , it
can be rewritten in the symmetric affine form of six states-
four inputs:

q̇ = f 1u1 + f 2u2 + f 3u3 + f 4u4, q ∈ ℜ6 (7)

4 A Chained Form Transformation for X4-
Flyer

In order to satisfy the conditions of (3), the input vector
fields f 1, · · · , f 4 are changed to

g1 =
f 1

cosφ cosθ
, g2 = f 2 g3 = f 3, g4 = f 4 (8)

which can be reduced to

g1 =



1
tanθ sinψ − tanφ cosψ

cosθ
tanθ cosψ + tanφ sinψ

cosθ
0
0
0


g2 =



0
0
0
1
0
0


g3 =



0
0
0
0
1
0


g4 =



0
0
0
0
0
1



The corresponding distributions are given by

G0 = span{g2,g3,g4}
G1 = span{g2,g3,g4,adg1g2,adg1g3}

whereG0 andG1 are involutive, andG1 has rank 5.
Sincen2 + n3 + n4 + 4 = 6, if n2 = n3 = 1 andn4 = 0,

then the conditions for determiningh1 . . . h4 are given by

dh1⊥G0, dL0
g1

h2⊥G0, dL0
g1

h3⊥G0, dh1⊥G1
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where note that the scalarh4 can be selected arbitrarily be-
cause ofn4 = 0.

The concrete distributionsG0 andG1 are as follows:

G0 =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



G1 =



0 0 0 0 0
0 0 0 cosψ

cos2 φ cosθ − sinψ
cos2 θ + tanφ sinθ

cos2 θ cosψ

0 0 0 cosψ
cos2 φ cosθ − sinψ

cos2 θ + tanφ sinθ
cos2 θ cosψ

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


In order to satisfy the conditions:

dh1⊥G0, dh1⊥G1 (9)

h1 should be
dh1 = [∗ 0 0 0 0 0] (10)

where∗ denotes any free element that the designer can se-
lect it arbitrarily. From this fact, we selecth1 such as

h1 = z (11)

The scalarsh2 andh3 have to satisfy the conditions:

dL0
g1

h2⊥G0, dL0
g1

h3⊥G0 (12)

which yields the following candidates in a derivative form:

dh2 = [∗ ∗ ∗ 0 0 0], dh3 = [∗ ∗ ∗ 0 0 0] (13)

Taking account of the fact that the variablez has been al-
ready selected forh1, it follows that

h2 = y, h3 = x (14)

Sinceh4 can be selected freely as pointed out above, we
decide

h4 = ψ (15)
From these discussions, it is found that

Φ (q) =



h1

L1
g1

h2

h2

L1
g1

h3

h3

h4


=



z
tanθ sinψ − tanφ cosψ

cosθ
y

tanθ cosψ + tanφ sinψ
cosθ

x
ψ



Ξ (q) =



1 0 0 0
L2

g1
h2 Lg2 L1

g1
h2 Lg3 L1

g1
h2 Lg4 L1

g1
h2

L2
g1

h3 Lg2 L1
g1

h3 Lg3 L1
g1

h3 Lg4 L1
g1

h3

L1
g1

h4 Lg2 L0
g1

h4 Lg3 L0
g1

h4 Lg4 L0
g1

h4



=



1 0 0 0
0 − cosψ

cos2 φ cosθ
sinψ
cos2 θ

− tφ sinθ
cos2 θ

cosψ tφ sinψ
cosθ + tθ cosψ

0 sinψ
cos2 φ cosθ

cosψ
cos2 θ

+ tφ sinθ
cos2 θ

sinψ tφ cosψ
cosθ − tθ sinψ

0 0 0 1


wheretα denotes tanα.

5 Discontinuous Control

The kinematic model of X4-flyer with a chained form
transformation is stabilized by using the Astolfi’s discon-
tinuous feedback control [5].

The resultant system with a chained form transforma-
tion is described by

ż=



ξ̇0

ζ̇0

ζ̇1
η̇0
η̇1
γ̇0


=



v1
v2
ζ0v1
v3
η0v1
v4


(16)

In order to make the above system discontinuous, applying
a coordinate transformation as aσ process yields

y1 = ξ0, y2 = ζ0, y3 =
ζ1

ξ0

y4 =
η0

ξ0
, y5 =

η1

ξ2
0

, y6 =
γ0

ξ0
(17)

When definingZ1 = ξ0 andZ2 = [ζ0 ζ1 η0 η1 γ0]T as the
coordinates with no transformation, this is equivalent to se-
lect thatσ = ξ2

0 andΦ = [ζ0ξ
2
0 ζ1ξ0 η0ξ0 η1 γ0ξ0]T in the

transformed coordinatesY1 = ξ0, Y2 = Φ (Z1, Z2) /σ (Z1).
Here, it is satisfied thatσ(0) = 0 and Φ(0, Z2) =
[0 0 0 η1 0]T , 0.

Differentiating the above new state variables, defining
v3 = ξ0v̂3 andv4 = ξ0v̂4, and rearranging it gives

d
dt



y1
y2
y3
y4
y5
y6


=



1 0 0 0
0 1 0 0

(y2 − y3) 1
y1

0 0 0
− y4

y1
0 1 0

(y4 − 2y5) 1
y1

0 0 0
− y6

y1
0 0 1




v1
v2
v̂3
v̂4



=

[
g11 g12
g21 g22

]
v (18)

Furthermore, defining Y1 = y1 and Y2 =[
y2 y3 y4 y5 y6

]T , and settingv1 = −ky1 gives

g21 × v1 = −k



0
y2 − y3
−y4

y4 − 2y5
−y6


△
= f (Y2) (19)
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Fig. 2: Controlled state vari-
ables in a chained form
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Fig. 3: Discontinuous con-
trol inputs

so that

Ẏ2 = f (Y2) + g22


v2
v̂3
v̂4



=



0 0 0 0 0
−k k 0 0 0
0 0 k 0 0
0 0 −k 2k 0
0 0 0 0 k





y2
y3
y4
y5
y6


+



1 0 0
0 0 0
0 1 0
0 0 0
0 0 1




v2
v̂3
v̂4


(20)

which is shown to be controllable. Therefore, it is easy to
find a continuous function as a linear state feedback that
can asymptotically stabilize this system.

6 Simulation

Settingk = 1 and assigning the closed-loop poles as
[−1 − 2 − 3 − 4 − 5] for theσ transformed system, the
resultant feedback gain matrix is obtained, so that the input
[v2 v̂3 v̂4]T can be described by


v2
v̂3
v̂4

 = −

8 −18 1 −6 0
1 −3 10 −32 0
0 0 0 0 2





y2
y3
y4
y5
y6


(21)

The simulation results are shown in Fig. 2 to Fig. 5,
where the initial state vector was set toq0 =

[1.5 1.5 − 2.0 π/10 π/10 π/10]T and the desired value
wasqr = [0 0 0 0 0 0]T .

Fig. 2 shows the time-responses of the state variables for
the system with the chained form transformation, whereas
Fig. 3 denotes the control inputs for such a chained form
system. It is found from Figs. 4 and 5 that the latitude,
horizontal position, and all attitude angles converged to the
desired values in a shot time by applying the proposed dis-
continuous control method.
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Fig. 4: Position control

� � � �

����

����

�

��� �
�
�

�	
������

�

	
�
�
�
��
��
�
�

Fig. 5: Attitude control

7 Conclusion

An underactuated control method has been considered
for a VTOL aerial robot with four rotors, where a kine-
matic model was used to rely on a discontinuous con-
trol approach. To assure a globally asymptotic stability
for the kinematic model based control system (or a global
controllability for the controlled objective), the canonical
form of a chained form, consisting of a kinematic model
with one generator-three chains, was obtained. Then, the
Astolfi’s discontinuous control approach was applied for
such a canonical form to realize an underactuated control
method that controls six states by four rotor inputs. The
effectiveness of the method was proved through a simula-
tion.
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